WHAT IS THE DIFFERENCE BETWEEN
ACCURACY AND PRECISION?
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
METEOROLOGIST JEFF HABY
Accuracy is defined as, "The ability of a measurement to match the actual value of the quantity being measured". If
in reality it is 34.0 F outside and a temperature sensor reads 34.0 F, then than sensor is accurate.
Precision is defined as, "(1) The ability of a measurement to be consistently reproduced" and "(2) The number of
significant digits to which a value has been reliably measured". If on several tests the temperature sensor
matches the actual temperature while the actual temperature is held constant, then the temperature sensor is precise.
By the second definition, the number 3.1415 is more precise than the number 3.14
An example of a sensor with BAD accuracy and BAD precision: Suppose a lab
refrigerator holds a constant temperature
of 38.0 F. A temperature sensor is tested 10 times in the refrigerator. The temperatures from the test yield
the temperatures of: 39.4, 38.1, 39.3, 37.5, 38.3, 39.1, 37.1, 37.8, 38.8, 39.0. This distribution shows no
tendency toward a particular value (lack of precision) and does not acceptably match the actual temperature
(lack of accuracy).
An example of a sensor with GOOD accuracy and BAD precision: Suppose a lab
refrigerator holds a constant temperature
of 38.0 F. A temperature sensor is tested 10 times in the refrigerator. The temperatures from the test yield the
temperatures of: 37.8, 38.3, 38.1, 38.0, 37.6, 38.2, 38.0, 38.0, 37.4, 38.3. This distribution shows no impressive
tendency toward a particular value (lack of precision) but each value does come close to the actual temperature
(high accuracy).
An example of a sensor with BAD accuracy and GOOD precision: Suppose a lab
refrigerator holds a constant temperature
of 38.0 F. A temperature sensor is tested 10 times in the refrigerator. The temperatures from the test yield the
temperatures of : 39.2, 39.3, 39.1, 39.0, 39.1, 39.3, 39.2, 39.1, 39.2, 39.2. This distribution does show a
tendency toward a particular value (high precision) but every measurement is well off from the actual temperature
(low accuracy).
An example of a sensor with GOOD accuracy and GOOD precision: Suppose a
lab refrigerator holds a constant temperature
of 38.0 F. A temperature sensor is tested 10 times in the refrigerator. The temperatures from the test yield
the temperatures of: 38.0, 38.0, 37.8, 38.1, 38.0, 37.9, 38.0, 38.2, 38.0, 37.9. This distribution does show a
tendency toward a particular value (high precision) and is very near the actual temperature each
time (high accuracy).
The goal of any meteorological instrument is to have high accuracy (sensor matching reality as close as possible)
and to also have a high precision (being able to consistently replicate results and to measure with as many
significant digits as appropriately possible). Meteorological instruments, including radar, need to be
calibrated in order that they sustain high accuracy and high precision.
The ultimate weather education website: http://www.theweatherprediction.com/
|
|
|