FROST POINT AND DEW POINT
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
METEOROLOGIST JEFF HABY
The
dew point is the temperature at which the air is saturated with respect to water vapor over a liquid surface.
When the
temperature is equal to the dewpoint then the
relative humidity is 100%. The common ways for the relative
humidity to be 100% is to 1) cool the air to the dewpoint,
2) evaporate moisture into the air until the
air is saturated, 3) lift the air until it adiabatically cools to the dew point.
The frost point is the temperature at which the air is saturated with respect to
water vapor over an ice surface. It
is more difficult more water molecules to escape a frozen surface as compared to a liquid surface since an ice
has a stronger bonding between neighboring water molecules. Because of this, the frost point is greater in temperature
than the dew point. This fact is important to precipitation growth in clouds. Since the vapor pressure is less
over an ice surface as compared to a supercooled liquid surface at the same temperature, when the relative humidity is
100% with respect to water vapor the relative humidity over the ice surface will be greater than 100%. Thus,
precipitation growth is favored on the ice particles.
The frost point is between the temperature and dewpoint. Knowing this is important when examining Skew-T soundings in
a subfreezing layer. Examine the sounding below. Notice the temperature and dewpoint traces gradually diverge
from each other with height even though the entire troposphere is saturated. Soundings assume there is no ice
present (only supercooled water). One reason the lines diverge is
because the sounding is only showing the dewpoint. If the frost point trace was drawn, the temperature would
be closer to the frost point than it is to the dewpoint in the middle and upper troposphere where subfreezing
temperature occur. At 0 C, the dew point is equal to the frost point and
this can be seen on the sounding by noticing the temperature is equal to the dew point in the saturated air where
the sounding temperature is 0 C.
|
|
|