DOWNDRAFT TYPES:
FORWARD FLANK AND REAR FLANK
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
METEOROLOGIST JEFF HABY
Here is the difference between a
forward flank and rear flank downdraft. The forward flank downdraft results
from the evaporational cooling of air that spills to the earth's surface. It spreads out in all directions under
a storm's downdraft but spreads more quickly in the direction the
PBL winds are blowing. The forward flank
downdraft (ffd) represents relatively cool and moist air. The fact that the ffd represents dense air is due
more to the fact that the air is cold rather than being moist.
Moist air is less dense than dry air but temperature
is a larger air density contribution than moisture content.
The rear flank downdraft (rfd) represents relatively
warm and
dry air which is forced down
from the mid-levels of the atmosphere. A thunderstorm represents a barrier
to airflow. Some air, as it collides into the side of a thunderstorm, is pushed down toward the surface. This air
is warmed
adiabatically and was previously
(before descent) fairly dry. When this air reaches the surface it is
warmed adiabatically and has an even lower
relative humidity. The air
associated with the forward flank downdraft
is warmed adiabatically upon descent BUT the ffd starts out at a much colder temperature than the rfd. The rfd
being warm has a relatively lower density than the ffd. Density circulations (mesoscale baroclinic circulations)
are generated due to the differences in density between the two small scale air masses. The interaction between the ffd
and rfd generates tubes of
horizontal vorticity and is important to the generation of the low level circulation
necessary for tornadogenesis. If the PBL
winds are strong, large values of helicity will be produced. Helicity
is storm relative inflow times horizontal vorticity generated by
speed and directional wind shear. The interaction
between the ffd and rfd increases the amount of low level shear.
|
|
|